3.493 \(\int \frac{a+b \log (c (d+\frac{e}{\sqrt [3]{x}})^n)}{x} \, dx\)

Optimal. Leaf size=51 \[ -3 b n \text{PolyLog}\left (2,\frac{e}{d \sqrt [3]{x}}+1\right )-3 \log \left (-\frac{e}{d \sqrt [3]{x}}\right ) \left (a+b \log \left (c \left (d+\frac{e}{\sqrt [3]{x}}\right )^n\right )\right ) \]

[Out]

-3*(a + b*Log[c*(d + e/x^(1/3))^n])*Log[-(e/(d*x^(1/3)))] - 3*b*n*PolyLog[2, 1 + e/(d*x^(1/3))]

________________________________________________________________________________________

Rubi [A]  time = 0.0499843, antiderivative size = 51, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.136, Rules used = {2454, 2394, 2315} \[ -3 b n \text{PolyLog}\left (2,\frac{e}{d \sqrt [3]{x}}+1\right )-3 \log \left (-\frac{e}{d \sqrt [3]{x}}\right ) \left (a+b \log \left (c \left (d+\frac{e}{\sqrt [3]{x}}\right )^n\right )\right ) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Log[c*(d + e/x^(1/3))^n])/x,x]

[Out]

-3*(a + b*Log[c*(d + e/x^(1/3))^n])*Log[-(e/(d*x^(1/3)))] - 3*b*n*PolyLog[2, 1 + e/(d*x^(1/3))]

Rule 2454

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rubi steps

\begin{align*} \int \frac{a+b \log \left (c \left (d+\frac{e}{\sqrt [3]{x}}\right )^n\right )}{x} \, dx &=-\left (3 \operatorname{Subst}\left (\int \frac{a+b \log \left (c (d+e x)^n\right )}{x} \, dx,x,\frac{1}{\sqrt [3]{x}}\right )\right )\\ &=-3 \left (a+b \log \left (c \left (d+\frac{e}{\sqrt [3]{x}}\right )^n\right )\right ) \log \left (-\frac{e}{d \sqrt [3]{x}}\right )+(3 b e n) \operatorname{Subst}\left (\int \frac{\log \left (-\frac{e x}{d}\right )}{d+e x} \, dx,x,\frac{1}{\sqrt [3]{x}}\right )\\ &=-3 \left (a+b \log \left (c \left (d+\frac{e}{\sqrt [3]{x}}\right )^n\right )\right ) \log \left (-\frac{e}{d \sqrt [3]{x}}\right )-3 b n \text{Li}_2\left (1+\frac{e}{d \sqrt [3]{x}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0029341, size = 53, normalized size = 1.04 \[ -3 b n \text{PolyLog}\left (2,\frac{d+\frac{e}{\sqrt [3]{x}}}{d}\right )+a \log (x)-3 b \log \left (-\frac{e}{d \sqrt [3]{x}}\right ) \log \left (c \left (d+\frac{e}{\sqrt [3]{x}}\right )^n\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Log[c*(d + e/x^(1/3))^n])/x,x]

[Out]

-3*b*Log[c*(d + e/x^(1/3))^n]*Log[-(e/(d*x^(1/3)))] + a*Log[x] - 3*b*n*PolyLog[2, (d + e/x^(1/3))/d]

________________________________________________________________________________________

Maple [F]  time = 0.352, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{x} \left ( a+b\ln \left ( c \left ( d+{e{\frac{1}{\sqrt [3]{x}}}} \right ) ^{n} \right ) \right ) }\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*ln(c*(d+e/x^(1/3))^n))/x,x)

[Out]

int((a+b*ln(c*(d+e/x^(1/3))^n))/x,x)

________________________________________________________________________________________

Maxima [B]  time = 2.31771, size = 250, normalized size = 4.9 \begin{align*} -3 \,{\left (\log \left (\frac{d x^{\frac{1}{3}}}{e} + 1\right ) \log \left (x^{\frac{1}{3}}\right ) +{\rm Li}_2\left (-\frac{d x^{\frac{1}{3}}}{e}\right )\right )} b n + \frac{2 \, b e^{2} n \log \left (x\right )^{2} + 12 \, b e^{2} \log \left ({\left (d x^{\frac{1}{3}} + e\right )}^{n}\right ) \log \left (x\right ) - 12 \, b e^{2} \log \left (x\right ) \log \left (x^{\frac{1}{3} \, n}\right ) + 9 \, b d^{2} n x^{\frac{2}{3}} - 36 \, b d e n x^{\frac{1}{3}} - 6 \,{\left (b d^{2} n x^{\frac{2}{3}} - 2 \, b d e n x^{\frac{1}{3}}\right )} \log \left (x\right ) + 12 \,{\left (b e^{2} \log \left (c\right ) + a e^{2}\right )} \log \left (x\right ) + \frac{3 \,{\left (2 \, b d^{2} n x \log \left (x\right ) - 3 \, b d^{2} n x\right )}}{x^{\frac{1}{3}}} - \frac{12 \,{\left (b d e n x \log \left (x\right ) - 3 \, b d e n x\right )}}{x^{\frac{2}{3}}}}{12 \, e^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/3))^n))/x,x, algorithm="maxima")

[Out]

-3*(log(d*x^(1/3)/e + 1)*log(x^(1/3)) + dilog(-d*x^(1/3)/e))*b*n + 1/12*(2*b*e^2*n*log(x)^2 + 12*b*e^2*log((d*
x^(1/3) + e)^n)*log(x) - 12*b*e^2*log(x)*log(x^(1/3*n)) + 9*b*d^2*n*x^(2/3) - 36*b*d*e*n*x^(1/3) - 6*(b*d^2*n*
x^(2/3) - 2*b*d*e*n*x^(1/3))*log(x) + 12*(b*e^2*log(c) + a*e^2)*log(x) + 3*(2*b*d^2*n*x*log(x) - 3*b*d^2*n*x)/
x^(1/3) - 12*(b*d*e*n*x*log(x) - 3*b*d*e*n*x)/x^(2/3))/e^2

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{b \log \left (c \left (\frac{d x + e x^{\frac{2}{3}}}{x}\right )^{n}\right ) + a}{x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/3))^n))/x,x, algorithm="fricas")

[Out]

integral((b*log(c*((d*x + e*x^(2/3))/x)^n) + a)/x, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*ln(c*(d+e/x**(1/3))**n))/x,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{b \log \left (c{\left (d + \frac{e}{x^{\frac{1}{3}}}\right )}^{n}\right ) + a}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*log(c*(d+e/x^(1/3))^n))/x,x, algorithm="giac")

[Out]

integrate((b*log(c*(d + e/x^(1/3))^n) + a)/x, x)